Computing with Signals

Signal
Model

Processing
Representation

Signal

Model or
 Representation

- Polynomial representation

Focus of this lecture

Model

Taylor Series:
$f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots$

Model

Taylor Series:

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
$$

Examples:

$$
\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}
$$

Model

Taylor Series:

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
$$

Examples:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Model

Taylor Series:

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
$$

Examples:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

More examples:

$$
\begin{array}{rlrl}
\sin x & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} & & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \\
& \text { for all } x \\
\cos x & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} & & 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots \\
\tan x & =\sum_{n=1}^{\infty} \frac{B_{2 n}(-4)^{n}\left(1-4^{n}\right)}{(2 n)!} x^{2 n-1} & & \text { for all } x \\
\sec x & =\sum_{n=0}^{\infty} \frac{(-1)^{n} E_{2 n}}{(2 n)!} x^{2 n} & & x^{3} \\
3 & \frac{2 x^{5}}{15}+\cdots & & \text { for }|x|<\frac{\pi}{2} \\
\arcsin x & =\sum_{n=0}^{\infty} \frac{(2 n)!}{4^{n}(n!)^{2}(2 n+1)} x^{2 n+1} & & =x+\frac{x^{3}}{6}+\frac{3 x^{5}}{40}+\cdots
\end{array}
$$

Limitations

Taylor Series:

- The function is differentiable
- Works like a charm if you know the function (in closed form) apriori
- Approximation only in the neighborhood of the sampled point

Using in practice requires derivative information of the signal.

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
$$

Signal
Model

Processing
Representation

Model
Polynomial Series:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

Model

Polynomial Series:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

A univariate polynomial of degree n with real or complex coefficients has n complex roots, if counted with their multiplicities.

Model

Polynomial Series:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

Model

Polynomial Series:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

Step 1: Sample the signal at at least $(P+1)$ points (why $P+1)$? (P is the degree)

$$
\begin{gathered}
y_{1}=a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+a_{3} x_{3}^{3} \\
y_{2}=a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+a_{3} x_{2}^{3} \\
\square \\
y_{m}=a_{0}+a_{1} x_{m}+a_{2} x_{m}^{2}+a_{3} x_{m}^{3}
\end{gathered}
$$

Model

Polynomial Series:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} .
$$

Step 1: Sample the signal at at least (n) points (why?). [$n-1$ is the degree of $f(x)$]

$$
\left[\begin{array}{c}
\mathrm{y}_{1} \\
\mathrm{y}_{2} \\
\\
\mathrm{y}_{\mathrm{m}}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
1 & x_{3} & x_{3}^{2} & \ldots & x_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n-1}
\end{array}\right]\left[\begin{array}{c}
\mathrm{a}_{0} \\
\mathrm{a}_{1} \\
\\
\\
\mathrm{a}_{\mathrm{n}-1}
\end{array}\right]
$$

Model

Polynomial Series:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} .
$$

Step 1: Sample the signal at at least (n) points (why?). [$n-1$ is the degree of $f(x)$]

$$
\left[\begin{array}{c}
\mathrm{y}_{1} \\
\mathrm{y}_{2} \\
\\
\mathrm{y}_{\mathrm{m}}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
1 & x_{3} & x_{3}^{2} & \ldots & x_{3}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n-1}
\end{array}\right]\left[\begin{array}{c}
\mathrm{a}_{0} \\
\mathrm{a}_{1} \\
\\
\\
\mathrm{a}_{\mathrm{n}-1}
\end{array}\right]
$$

Step 2: Solve $\mathrm{y}=\mathrm{Xa}$

Summary, Polynomial series approximation,

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

- Can model (or represent) any polynomial of degree n
- Parameters of the model are $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$
- Estimating the parameters requires a regression approach

Summary, Polynomial series approximation,

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

Example:
Is $1-x, 1+x, x^{2}$ linearly independent?
$t_{1}(1-x)+t_{2}(1+x)+t_{3} x^{2}=0$

https://www.youtube.com/watch?v=SzZaQnzstfE
Linear Algebra (Full Course)
The Vector Space of Polynomials: Span, Linear Independence, and Basis
(3) Dr. Trefor Bizet ©

Dr. Trefor Raze
270K subscribers

- Can model (or represent) any polynomial of degree n
- Parameters of the model are $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$
- Estimating the parameters requires a regression approach

